Nitrate-independent expression of plant nitrate reductase in Lotus japonicus root nodules.
نویسندگان
چکیده
Nitrate-independent nitrate reductase (NR) activity is generally found in legume root nodules. Therefore, the effects of nitrate on plant NR activity and mRNA were investigated in the root nodules of Lotus japonicus (L. japonicus). Both NR activity and mRNA levels in roots and root nodules were up-regulated by the addition of nitrate. In the absence of nitrate, NR activity and mRNA were detected in root nodules but not in roots. Southern blotting analysis indicates that NR is encoded by a single gene in L. japonicus. No nitrate was detected in the root nodules or roots of plants grown in the absence of nitrate, while its accumulation was observed in plants supplied with exogenous nitrate. These results indicate that inducible-type NR can be expressed in root nodules in the absence of nitrate. The activation state of the nitrate-independent activity of NR was as high as that of NR activity induced by nitrate. NR mRNA expressed independently of nitrate in root nodules without nitrate was localized in the infected regions of the root nodules. Thus, the expression could be related to the specific structure and environment of root nodules.
منابع مشابه
Nitrate assimilation in Lotus japonicus.
This paper summarizes some recent advances in the understanding of nitrate assimilation in the model legume Lotus japonicus. First, different types of experimental evidence are presented that emphasize the importance of the root in the nitrate-reducing assimilatory processes in this plant. Secondly, the main results from an ethyl methanesulphonate mutagenesis programme are presented. In this pr...
متن کاملNod factor/nitrate-induced CLE genes that drive HAR1-mediated systemic regulation of nodulation.
Host legumes control root nodule numbers by sensing external and internal cues. A major external cue is soil nitrate, whereas a feedback regulatory system in which earlier formed nodules suppress further nodulation through shoot-root communication is an important internal cue. The latter is known as autoregulation of nodulation (AUT), and is believed to consist of two long-distance signals: a r...
متن کاملEthylene insensitivity conferred by a mutated Arabidopsis ethylene receptor gene alters nodulation in transgenic Lotus japonicus.
BACKGROUND AND AIMS Transgenics are used to demonstrate a causal relationship between ethylene insensitivity of a seedling legume plant, the level of ethylene receptor gene expression, lateral root growth and Mesorhizobium loti-induced nodule initiation. METHODS Lotus japonicus plants expressing the dominant etr1-1 allele of the Arabidopsis thaliana gene encoding a well-characterized mutated ...
متن کاملNitrate Effect on Nitrogen Fixation (Acetylene Reduction): ACTIVITIES OF LEGUME ROOT NODULES INDUCED BY RHIZOBIA WITH VARIED NITRATE REDUCTASE ACTIVITIES.
The effect of nitrate on symbiotic nitrogen fixation by root nodules of cowpea (Vigna unguiculata L., Walp., cv. California Blackeye) and lupine (Lupinus augustifolius L., cv. Frost) plants inoculated with nitrate reductase-expressing and nitrate reductase-nonexpressing Rhizobium strains were examined. Nitrate reductase of Rhizobium bacteroids in the nodules of cowpea and lupine reduced nitrate...
متن کاملAllene oxide synthase, allene oxide cyclase and jasmonic acid levels in Lotus japonicus nodules
Jasmonic acid (JA), its derivatives and its precursor cis-12-oxo phytodienoic acid (OPDA) form a group of phytohormones, the jasmonates, representing signal molecules involved in plant stress responses, in the defense against pathogens as well as in development. Elevated levels of JA have been shown to play a role in arbuscular mycorrhiza and in the induction of nitrogen-fixing root nodules. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 54 388 شماره
صفحات -
تاریخ انتشار 2003